
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 10 | Oct - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 1

9

Brokerage-Based Approach for Cloud Service Selection

Johnson Crastha b

Information Sciences & Technology

Alva’s institute of engineering and

technology

Chinmayi M k

Information Sciences & Technology

Alva’s institute of engineering and

technology

 Dipthi palai

Information Sciences & Technology

Alva’s institute of engineering and

technology

Abstract—The expanding Cloud computing services offer

great opportunities for consumers to find the best service and

best pricing, which however raises new challenges on how to

select the best service out of the huge pool. It is time-consuming

for consumers to collect the necessary information and analyze

all service providers to make the decision. This is also a highly

demanding task from a computational perspective, because the

same computations may be conducted repeatedly by multiple

consumers who have similar requirements. Therefore, in this

paper, we propose a novel brokerage-based architecture in the

Cloud, where the Cloud brokers are responsible for the

service selection. In particular, we design a unique indexing

technique for managing the information of a large number of

Cloud service providers. We then develop efficient service

selection algorithms that rank potential service providers and

aggregate them if necessary. We prove the efficiency and

effectiveness of our approach through an experimental study

with real and synthetic Cloud data.

I. INTRODUCTION

Cloud services offer an elastic and scalable IT task force

in terms of storage space and computing capabilities which

are essential to most business owners, especially small and

medium-sized businesses [22]. While this has fueled the

large growth in Cloud services, the growing number of

Cloud services make it difficult for the potential users to

weigh and decide which options suit their requirements the

best. There is a need for an additional computing layer on top

of the base service provisioning to enable tasks such as

discovery, mediation, and monitoring. This additional layer

of computing is referred to as a brokerage system.

Analogous to a stockbroker, a Cloud broker is essentially

an intermediary between users and service providers, which

helps the users choose services tailored to their needs. The

importance of such a brokerage service is stressed by

Gartner [3], [8] who defined different types of Cloud

brokerage, including arbitrage, aggregation, and

intermediation. Similarly, other recent work [7], [15] has

acknowledged the increasingly important role of Cloud

brokers and their multiple responsibilities ranging from

service aggregation to monitoring. Companies like Dell

have recently claimed an interest in Cloud services

brokering, and have been working in partnership with

VMWare to push out the same [21]. As acknowledged by

this body of work, the first step for

a broker to fulfill these responsibilities is to select the

appropriate cloud service providers based on the user's

requirements, which is the focus of this paper.

The selection of Cloud providers requires addressing

several interesting questions raised by the unique

characteristics of the Cloud computing environments. First,

Cloud services may seem to resemble but are very different

from Web services. For example, there is no standardized

representation of the Cloud providers’ properties. Also, the

Service Level Agreements (SLAs) of Cloud providers often

vary in format and content. Therefore, Web service selection

algorithms [12], [16] cannot be directly applied to the

Cloud domain. Secondly, a Cloud user may have a service

requirement that cannot be fulfilled by any single service

provider, thus requiring aggregation of service providers.

Aggregating service providers is very challenging in the

Cloud due to complex relationships among Cloud service

providers that are built via subcontracting. For example,

when aggregating service providers that rely on the same

contractor for storage space, we should be careful to avoid

overextending the actual storage space.

Bearing these challenges in mind, we propose a

comprehensive brokerage-based architecture to support

cloud service selection. The overall architecture is

illustrated in Figure 1. In particular, we propose an efficient

indexing structure called the CSP (Cloud Service Provider)

index, to manage the potentially large number of service

providers. The CSP-index is built based on a novel

encoding technique that captures similarity among various

properties of service providers. With the aid of the CSP-

index, we further design the service selection algorithm that

considers aggregation of services and provides rankings of

potential service providers. To evaluate our approach, we

have collected real data from the top 10 Cloud providers

listed by SearchCloudComputing in [19]. Our experimental

study demonstrates both efficiency and effectiveness of our

approach.

The remaining of the paper is organized as follows.

Section II reviews related work. Section III describes the

brokerage-based service selection architecture and data

structure. Section IV presents the service selection

algorithms. Section V reports experimental results. Finally,

Section VI concludes the paper.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 10 | Oct - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 2

Figure 1. The Brokerage-based Cloud Service Selection

II. RELATED WORKS

There have been some high-level discussion on service

provider selection and brokerage-based frameworks in the

cloud [7], [10], [15], [19]. For example, Gartner [8]

introduced different types of cloud brokerage including

arbitrage, aggregation, and intermediation. Others [7], [15]

discussed possible responsibilities of Cloud brokers such as

service monitoring and service aggregation. However, to

the best of our knowledge, there is not any existing work

that provides a specific solution to the Cloud service

selection problem. The only academic effort in this

direction is from Buya et al. [4] who provide a general

description of the key role of cloud broker services for a

market-oriented cloud service. Also, although not specific

to Cloud brokers, Xin et al.

[24] have considered collaborative protocols among Cloud

service providers for resource sharing. In particular, Xin et

al. use trust as the only criteria to select service partners.

As we show next, our work considers a much wider range

of factors during the service selection.

While cloud brokerage and selection is relatively

unexplored territory, service selection problems have been

studied in great depth in the context of Web services. To

date, most of the works on Web service selection are based

on QoS (Quality of Service) [18]. For instance, Kalepu et al

[12] propose an objective measure of QoS based on the

extent up to which the Web service meets its service level

agreements. Paolucci et al. [17] proposed a solution based

on DAML- S, a DAML-based language for service

description, and then they perform a semantic matching

between the request and a service advertisement. Zeng et

al. [26] developed a middleware that composes multiple

Web services to meet a single user’s need. The goal is to

maximize user satisfaction

while satisfying user and service provider constraints at the

same time. Benalla et al. [2] also propose various

algorithms for Web service composition including fast

composition, scalable composition, and distributed

composition. Unlike works on Web service domain, our

work is unique in several aspects. First, our service

selection approach is based on efficient indexing and

querying of service provider information. Such techniques

have never been leveraged in the Web service domain.

Second, we deal with much more complicated properties

and relationships about the service providers due to the

complexity of the Cloud.

Additionally, our work employs a recent high-dimensional

data indexing technique, i.e., the distance [25]. High-

dimensional data indexes [5], [6], [11], [13], [14], [23] are

typically used for retrieval of similar multimedia objects

such as images, and videos. It is not trivial to adapt it to

the Cloud service provider selection. We propose a new

encoding technique that represents multiple properties of

service providers. We also design novel querying techniques

that take into account unique characteristics in the Cloud

such as the relationships among service providers, which do

not exist in conventional high-dimensional data sets.

III. THE BROKERAGE-BASED CLOUD SERVICE

SELECTION ARCHITECTURE

In the brokerage-based Cloud service selection

architecture, there are three types of entities: Cloud service

provider, Cloud broker, and end-users. The Cloud broker,

which has a contract with the Cloud service providers,

collect their properties (e.g, service type, unit cost, and

available resources), and the consumer's service

requirements. The Cloud broker analyzes and indexes the

service providers ac- cording to the similarity of their

properties. Upon receiving the service selection request

from an end-user, the Cloud broker will search the index to

identify a ranked list of candidate providers based on how

well they match the user requirements. This list forms the

basis of the end-users' final decision.

The realization of the architecture includes two key

technical issues. One is the construction of the index for

managing the service providers. The other is the query

algorithm for the service selection.

A. Indexing Cloud Service Providers

In face of a large number of Cloud service providers, it is

important to design an efficient index structure to facilitate

information management and retrieval. Thus, we propose a

Cloud Service Provider (CSP) index. The CSP-index is

developed using the B
+
-tree as the base structure since the

B
+
-tree is widely adopted in commercial database systems

and provides a great foundation for our new index structure to

be easily integrated into existing systems. In what follows,

we first describe the data structure of the CSP-index and

then present the index construction algorithm.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 10 | Oct - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 3

1) Data Structure: The internal nodes of the CSP-index

have a similar format as the B
+
-tree and serves as the

search directory.

• Service Type (p1). This denotes the type of

service provided, which could vary between service

on- demand, and reserved instances, or refer to

specialized services such as custom IPs in case of

Amazon or caching in case of Windows Azure.

• Security (p2). This denotes the level of security

and/or privacy that can be achieved using the various

options provided by the Cloud provider. If the service

provider satisfies three or more of the Information

Security guidelines listed in the Security Guidance for

Critical Areas of Focus in Cloud Computing published

by the Cloud Standards group [20], apart from the

compliance or risk management guidelines, the service

providers are classified as having high security. If they

satisfy only the compliance, legal or risk management

guidelines they are classified as having medium

security. Else they are classified as having low

security. Accordingly, when the service provider offers

advanced security services such as Access Control,

offered by Windows Azure, or it adopts several security

standards (e.g., secure connections), the level of

security is labeled as high. When there are security

options, but these options are limited to secure

passwords and encryption as in the case of Rackspace,

the level of security that can be achieved is considered

below. When the features do not include detailed

access control options, but still provide improved

security through automatic security updates, as

Google does for its Clouds, then the security level is

considered to be medium.

• Quality of service (QoS, p3). QoS is deterred-

mined by the Cloud broker which analyzes the

collected

information about service providers over time, and

ratings provided by other vendors. It is briefly

represented using values high, low or medium.

• Measurement units (p4). This represents in what

terms the service can be charged. Measurement can be

in terms of memory used, the number of transactions,

the number of connections or data transfers, or the

time taken for the data transfer.

• Pricing Units (p5). This indicates how long

service is reserved for. For example, the price could

be charged per hour, per month, or year.

• Instance sizes (p6). This refers to the number

of resources used at a given instant by the user. The

size may vary from micro (in case of Amazon EC2) to

small, medium, large, or extra-large to something such

as quadruple extra large provided by Amazon EC2.

• Operating system (p7). This indicates that the

the operating system could be Linux or Windows.

• Pricing (p8). This is the actual price for the usage of

the cloud service.

• Pricing sensitivity to regions (p9). This de-

notes if the price varies by region.

• Subcontractors (p10). This indicates if

subcontractors are present, and if so, what kind of

services

they provide.

2) Index Construction: The novelty of the CSP-index lies

in the construction of the index keys for service providers

that can speed up the query processing. Intuitively, service

providers with similar properties should be stored close to

each other. In this way, once the broker identifies a candidate

service provider in the index, the broker can quickly locate

other candidates with closely matching properties since

they are stored together. To achieve this, we propose the

following key generation method that captures the similarity

among service providers accurately while being efficient.

The algorithm consists of three major steps. The first step

is to encode the properties of the service provider, and the

second step is to encode the relationships among service

providers built by subcontracts. Finally, the service providers

are to be clustered based on the encoding to construct the

index key. We elaborate on each step in the following.

Step 1: Property Encoding.

For each type of service provider, we encode their

properties. The overall idea is to use a bit array to store the

values of the service provider’s properties. The bit array is

of the same size for every service provider. The bit array

consists of 9 sections corresponding to the first 9 properties

identified in Section III-A1. The number of bits used for

each section is based on the domain of each property. The

encoding differs according to the types of properties.

The first property, service type, is treated specially. We

employ the oneR mining algorithm to identify the same

service that may be described in different ways. According

to the mining result, service types falling into the same group

will be assigned the same encoding.

For properties with continuous values, such as the cost,

the storage capacity, we partition its domain into n ranges

and represent each range using a bit. provider is 800M to

2G, the second and the third bits will be set to 1, resulting

in the encoding ‘0110’.
For properties with categorical values, we use a numerical

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 10 | Oct - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 4

value to represent it. For example, the property “service

quality” can be described using “high”, “medium”, “poor”.

Correspondingly, we convert it to numbers “3”(high),

“2”(medium), “1”(poor). A typical example of a descriptive

property is the privacy level. Also, if a service provider does

not have a specific value for certain properties, the

corresponding sections in the bit array will be set to ‘0’.

Step 2: Relationship Encoding.

The CSP-Index also stores relationships among the service

providers built on subcontracting. We represent the

relationship using a binary bit array with three bits. The

first bit is set to 1 if subcontractors are present. The second

bit is set to 1 if the subcontractor provides computational or

storage services. The third bit is set to 1 if the subcontractor

provides security, privacy, or search-related services.

Step 3: Index Key Generation

After the encoding, each service provider has a set of

binary strings mapping each property, and a bit-array as the

result of the relationship encoding. Then, we generate the

integrated encoding by concatenating the bits representing

the service type with the XOR-ed results of the remaining

property encodings (as shown in Equation 1).

Espi
= p1i

||(p2i
⊕p3i

⊕p4i
⊕p5i

⊕p6i
⊕p7i

⊕p8i
⊕p9i

⊕p10i
)

(1)
Performing the XOR operations on the strings helps

condense the resulting string to a small size, while still

preserves the similarity between service providers. It is

worth noting that the encoding may generate false

positives, i.e., a small number of dissimilar service

providers may receive similar encodings. Such false

positives will be filtered out at the last step of the service

selection query and will not affect the selection quality.

The encoding idea is illustrated by the following example.

Example 3.2: Consider the following small set of

properties for example

• Service quality: 3-High, 2-medium, 1-poor

• Privacy protection: 3-High, 2-medium, 1-poor

Suppose that a service provider SP1 provides service type

'0001', 800M to 2G storage space to each end-user at

10 cents/min with medium service quality and medium

privacy protection. The corresponding encoding of each

property is: ‘0110’(storage), ‘010’(cost), ‘010’(service

quality), '010'(privacy). The final integrated encoding for

the service provider is then computed as follows:

Esp1
= 0001||(0110 ⊕ 010 ⊕ 010 ⊕ 010) = 00010100

We employ the k-means algorithm [9] to cluster all the
service providers based on the Hamming distance between

their final encodings, where k is equal to the number

Encodings of Service Providers

Figure 2. Structure of CSP-Index

of service types. An auxiliary structure is maintained to

store the cluster centers. Then, we leverage the idea of the

distance [11], [25] to generate the indexing key Keys. Using

distance allows us to index the service points as data points,

on a B
+
-tree-like index structure, which as described earlier

is particularly suited for this problem space due to its wide

adoption in commercial database systems.

To generate the index key, we first compute the Hamming

distance (denoted as Dh) between the encoding of each

service provider and its closest cluster center. Then, we

add a scaling value S to Dh to form the index key Keys.

The scaling value is used to partition the dimensional space

into regions, where each region holds a cluster of points

close to each other. Therefore, the scaling value depends

upon the number of regions we aim to generate. The value

S is directly proportional to the number of service types

encountered since the number of regions must be

proportional to the number of service types. k is the constant

used to stretch the index values so that the partitioning of the

CSPs are easier. Equation 2 summarizes the key
generation, where Espi

is the property encoding of service

provider I, and Eck
is the encoding of the cluster center CK

which is closest to the service provider i.
Keys i

= S · k + Dh(Espi
, Eck

) (2)
Once the indexing key is generated, the insertion and

deletion in the CSP-index resemble that in the B
+
-tree. An

example CSP-index is shown in Figure 2.

IV. CLOUD SERVICE SELECTION

Indexing helps the broker arrange the service providers

in a way that facilitates fast information retrieval. We now

proceed to discuss the detailed query algorithms for the

service selection.

A. Query Definition

A user sends a service selection query to the broker which

specifies what properties and values he/she expects from the

service providers. A formal definition of the service selection

query is given below

CSP−Index

... ...

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 10 | Oct - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 5

 CSS Query Algorithm

The Cloud Service Selection (CSS) query algorithm

consists of four phases: (1) query encoding; (2) k nearest

neighbor search; (3) refinement; (4) consideration of special

criteria. The query encoding converts the user query into the

form of an index key of the CSP-index. Based on the query

encoding, the k nearest neighbor search returns k candidate

service providers whose index keys are similar to the query

encoding and hence may satisfy the query requirements. The

last two phases further exam the properties of the candidate

service providers and their relationship to find the best

combination of service providers that address the user’s

needs. We detail the key steps of each phase as follows.

Step 1: Query Encoding.

Given a user query, the Cloud broker treats the property

requirements in the query as properties of a new service

provider and encodes the properties in the same way as

presented in Step 1 of the index construction in Section III-

A. The obtained property encoding is compared with the

cluster centers stored in the auxiliary structure. The cluster

center with the smallest hamming distance to the property

encoding is selected. Then, we use Equation 2 to generate

the index key value for this query.

Step 2: K-nearest neighbor search.

Based on the obtained index key value of the query

(denoted as Key), we search the CSP-index to find the k
candidate service providers whose property encodings are

the k nearest neighbors of Key. The search starts from the

root of the CSP-index. We follow the path that contains the

entry with the smallest hamming distance to Key, until

reach the leaf node of the CSP-index. Then, we examine the
property encodings stored in the leaf nodes and find the k
nearest values to Key. If the leaf node does not contain k
entries, we expand the search to its neighboring leaf nodes
on both sides until k nearest neighbors are found.

Here, the chosen value of k, i.e., the number of

neighbors to be considered, is critical to the overall

performance. If too few neighbors are retrieved, we may

not find the service provider which fully satisfies the query

requirements. This is because the CSP-index stores service

providers according to the similarity between all of their

properties, to be versatile for different queries. A specific

query usually focuses on a smaller set of properties, and

hence the k nearest neighbors retrieved based on all

properties may not contain the best solution regarding the

querying properties. On the other hand, if k is too large, it

will slow down the search process as well as the subsequent

refinement phase. This value of k is therefore decided by a

trial and error process. Based on extensive experiments, we

set k to the 10
th

 of the total number of service providers.
Step 3: Refinement.

From the obtained candidate service providers, the

refinement phase finds the service providers or the

combinations of service providers that satisfy the query

requirements.

The first step of the refinement is to further reduce the
number of service providers that need to be fully examined.

Specifically, we only consider top k2 service providers in the

k candidates obtained from the previous step, where k2 ⊕ k.
To find the top k2 service providers, we create a new run-
time index for k candidates based on only the properties

listed in the query. The key of each candidate provider in the

run-time index is computed based on new property encoding

similar to Equation 1: Keyspi
= QP1 ⊕ QP2⊕. . .⊕QPn,

where QP1, . . ., QPR are the properties listed in the query.
For example, if the user lists only service type, instance

size, and cost in the query, then only these three properties

are used to form the key for the run-time index. The run-

time index helps to quickly order the k candidate service

providers according to their closeness to the query. Here the

closeness is measured using the hamming distance between

the index key and the query. Then, we execute a k2-NN
query to retrieve the top k2 service providers.

The next step is to consider each querying property

individually and sort the k2 service providers in ascending
order of their hamming distances for that property. Suppose

that there are n querying properties. We obtain n sorted

lists of service providers corresponding to each property.

Recall that the querying properties are given in decreasing

order of importance in the query. Therefore, we start from

the sorted list of the first (i.e., the most important) querying

property, and apply a greedy algorithm to find the best

combination of service providers that meets the user’s

service requirements.

In particular, we first select the service provider on top of

the first sorted list. We remove the satisfied querying

properties from the subsequent process and adjust partially

satisfied querying properties. For example, if the user

requests

20GB of storage space, while the selected service provider
only has 5GB available, we adjust the querying property on
storage space to 15GB (=20GB-5GB) and look for more

service providers. As long as there are unsatisfied querying

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 10 | Oct - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 6

10

10

properties, we continue the selection of service providers

by looking into the list of the next important unsatisfied

property and repeat the process. The selection process stops

when all querying properties are satisfied. This set of service

providers is sent to the next phase (discussed in Step 4) to

verify possible collision and collusion among them caused

by the shared subcontractors. If there exists any collision or

collusion in the current solution, Step 4 will return a ranking

for this solution to indicate its collision and collusion

degree. The higher the ranking, the less the collision or

collusion. The service selection process will be repeated to

find other possible combinations of service providers until

a better solution cannot be found. The final output of the

service selection algorithm may contain a ranked list of

solutions.

Step 4: Consideration of Special Criteria

The possibility of a collision or collusion between service

providers needs to be considered during their selection.

• Collision is the occurrence of a lack of a promised

immutable resource due to the dependence of the

selected service providers on the same contractor who

promises the resource to all of them, not accounting

for a simultaneous demand from all. For example, let

us consider two service providers SP1 and SP2, the

storage servers are located, being that it has a part

However, if the user specifies that the servers be from
a certain region, such as the USA, then a collision

occurs if the shared subcontractor is not taken into

account.

• Collusion is the ability of service providers or

subcontractors to derive more information or meta-

information about the data stored on their resources,

without the explicit permission or even the knowledge

of the user. It occurs due to the providers or

subcontractors cross-referencing two or more data

sets. For example, if the selected service providers for

a given user request, uses the same subcontractor that

provides a record maintenance service, this

subcontractor is then possible to identify that the data

stored by these service providers are linked to the same

user and take advantage of such extra knowledge to

infer user’s information.

To detect collision and collusion, we verify the

subcontractor encoding (p10) of the service providers in the

solution obtained from Step 3, to see if they have any

subcontractor in common. The verification is conducted by

computing pi

means they do not have any subcontractor in common and

the entire algorithm stops.

If there are shared subcontractors, we further quantify the

degree of collision and collusion by assigning a ranking to

the solution. Simply put, a solution that contains more

shared subcontractors with more important properties will

be assigned a lower rank. Specifically, we analyze the AND

results of the subcontractor encodings (p10) of each pair of

service providers in the solution. If the AND result contains

1 in the second bit that represents storage space sharing,

that means the corresponding pair of service providers may

encounter a collision issue. If the AND result contains 1

in the third bit that represents security aspects, that means

there may be a collision issue. According to the order of

the properties listed in the query, we know which property

is more important, the storage space or the security aspect.

The final ranking is then determined by the weighted sum of

the number of collision and collusion, where larger weight is

given to the more important property. The ranking is returned

to Step 3 to check if there is a need to find other solutions.

V. PERFORMANCE STUDY

In this section, we first describe the collection and

generation of the datasets and then present the performance

evaluation of our algorithms. All the algorithms were

implemented as C programs. The tests were conducted

using a Sony Vaio F series Laptop, with an 8GB DDR3-

SDRAM-1333, 640GB Hardrive, and an Intel Core i7-

2820QM quad-core processor (2.30GHz) with Turbo Boost

up to 3.40GHz.

A. Generation of Testing Datasets

To identify what is the actual information that a broker

should account for when performing the service selection,

we studied the profile of the top ten Cloud service

providers [1]. Our analysis included providers offering

storage services or the Platform as a Service (Rackspace,

Salesforce, Cloud Foundry from VMWare), enterprise Cloud

platforms (CloudSwitch from Verizon, IBM Cloud), and

service providers who offer multiple types of services (Mi-

Microsoft Azure, Amazon EC2, and Google Cloud).

To extract functional and non-functional properties of

each provider, we first analyzed the providers’ available

manifests including documents related to security practices,

privacy policies, the Cloud documentation on getting started

and other user guides, FAQs, white papers, Terms of use,

and Service Level Agreements (SLAs). We then identified

and extracted a set of common properties based on common

business recommendations for service selection [20]. Table

I provides an excerpt of our data collection analysis which

shows the first 9 properties as introduced in Section III.A.1.

AND PJ
 pairwise for each pair of service providers i, j Specifically, Service Type of type 1 refers to service

in the solution. If any of the binary bit arrays that result

from any of these ANDs have the first bit as 1, that means

the service providers share a subcontractor. Otherwise, that

on-demand, 2 refers to reserved instances, while 3 refers to

specialized services such as custom IPs in case of Amazon,

or caching in the case of Windows Azure. Marmot stands

for

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 10 | Oct - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 7

Table I

CLOUD SERVICE PROVIDER ATTRIBUTES AND VARIABLE RANGES

CSP Name Variable Names

Se service
Type

Sec QoS Marmot Prcg units IS OS Prc Reg

Amazon EC2 1, 2, 3 High High 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2 0.000 - 2.60 Yes
Windows Azure 1, 2, 3 High High 1, 2, 3, 4 1, 4 1, 2, 3, 4 2 0.04- 0.96 No

Rackspace 1, 2, 3 Low Medium 1, 3, 4 1, 4 2 1, 2 0.015 - 1.08 No

Salesforce 1, 2, 3 Low Medium 4 1 N/D N/D 2 - 260 No

Joined 1, 2, 3 Low Medium 4 1, 4 3, 4 1, 2 0.085 -2.80 No

Google Clouds 1, 2, 3 Medium High 1, 2 1, 4 N/D 0.0057 - 0.0068 No

measurement units, where 1 refers to measurement in terms

of memory used, 2 refers to measurement in terms of several

transactions, 3 stands for the number of connections or data

transfers done, and 4 for the data transfer time. Prcg

units stand for Pricing Units, where 1 stands for per

month, 2 per year, 3 per 3 years, and 4 per hour. IS

denotes Instance sizes where 1 refers to Small and anything

below small such as Micro in the case of Amazon EC2,

2 for Medium,

3 for Large, while 4 for extra large and above such as

Quadruple extra Large provided by Amazon. OS is the

operating system. A value 1 corresponds to Linux, while

2 is Windows. Prc stands for pricing and is normalized to

per hour for each SP. Reg stands for location-based prices.

Based on the collected real data, we identified the acceptable

values for each of the properties, according to the maximum

and minimum service levels offered for a given property by

any of the service providers. This gave us our starting set

of ten data points and shaped the representation of service

providers. With the starting data points, we generated 10,000

data points representing synthetic providers. Each synthetic

providers was generated using random combinations for

each of the properties describing it. Specifically, we use a

total of possible 10
10

 combinations and filter out the outliers. pseudo-random number generator to generate a subset of the

B. Experimental Results

We compare our cloud service selection (CSS) algorithm

with a baseline approach which uses an exhaustive search to

check all possible combinations of all service providers for

a given query and find the service providers that match the

query properties best. The performance is evaluated in terms

of both efficiency and accuracy. Efficiency is measured using

the processing time. Accuracy is measured as the number of

different properties in the service providers returned by our

solution and that by the baseline solution.

1) Effect of Number of Service Providers: In the first

set of experiments, we compare the performance of our

CSS algorithm with the baseline approach when the total

number of service providers is increased from 1000 to

10000. For each set of service providers, we execute 100

service selection queries that contain 9 number of desired

properties. Figure 3 shows the average service selection time.

Observe that our CSS algorithm significantly outperforms

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 10 | Oct - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 8

the baseline approach and the performance gap between

the two approaches are enlarged quickly with the

increase of the number of service providers.

Specifically, our CSS algorithm is about 100 times

faster than the baseline approach when there are 10000

service providers. This demonstrates the pruning power

of the CSP-index used by our approach. The CSP-

index arranges service providers according to the

similarity among their properties. Given a service

request, the CSP-index helps to quickly direct the search

to the group of service providers that may satisfy the

querying properties. The baseline approach is very time

consuming since it needs to check the property of each

service provider and verify all possible combinations of

service providers.

Figure 3. Processing time when varying the number of service providers

Next, we compare the results returned from our

approach with that from the baseline approach to

evaluate our query accuracy. Figure 4 reports the

number of properties that are different in the service

providers obtained from our approach when compared

to the baseline approach. That is, each data point in

the graph is represented as

D = |Baselineprop − CSSprop|, where Baselineprop is

Figure 4. Accuracy of the CSS algorithm

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 10 | Oct - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 9

the set of properties of the service providers obtained in the

baseline approach and CSSprop is the set of properties of the

service providers obtained using our approach. As shown,

our CSS algorithm usually has just one or two properties that

are different from the baseline approach. Considering the

overall performance in terms of efficiency and accuracy, our

approach is considerably better than the baseline approach.

2) Effect of Number of Properties Required in the Service

Selection: To evaluate the effect of the properties, we vary

the number of querying properties per request from 1 to

9 and test them in the dataset containing 5000 service

providers. Two types of queries are considered. One

denoted as "multiple" refers to queries that return more

than one service provider for a single request. The other

denoted as "single" refers to queries that can be satisfied by

a single service provider. Figure V-B2 shows the results.

Again, as in Figure 4, each data point in the graph is the

number of properties that are different in the service

providers obtained from the CSS algorithm compared to the

properties obtained by the baseline approach. The first

observation is that the results returned by our CSS

algorithm have only minor differences from that of the

baseline approach in most cases. Second, we notice that the

CSS algorithm yields better accuracy, i.e., a fewer number

of different properties when the query result contains just a

single service provider. This is because it is easy to verify

whether a single service provider matches the query

requirement. There are more possibilities when selecting

the combination of service providers and the service request

needs to be fulfilled by multiple providers.

Figure 5. Effect of the number of query properties

VI. CONCLUSION

In this paper, we proposed a brokerage-based architecture

in the Cloud. Cloud brokers help end-users select and rank

Cloud service providers based on the service requests. We

also developed detailed algorithms to realize the proposed

architecture. The next steps involved would be to refine the

process of parsing the manifest variables, and providing the

users an opportunity to negotiate some terms of the SLAs.

REFERENCES

[1] B. Benatallah, M. Dumas, Q. Sheng, and A. Ngu. Declarative
composition and peer-to-peer provisioning of dynamic Web
services. In Proc. of 18th International Conference on Data
Engineering, pages 297–308. IEEE, 2002.

[2] J. Burt. Gartner Predicts Rise of Cloud Service Brokerages.
http://www.eweek.com/c/a/Cloud-Computing/Gartner-
Predict-Rise-of-Cloud-Service-Brokerages-759833/.

[3] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic.
Cloud computing and emerging platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future
Generation computer systems, 25(6):599–616, 2009.

[4] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In Proc.
of the International Conference on Very large databases
(VLDB), pages 426–435, 1997.

[5] A. M. Despain and D. A. Patterson. X-tree: A tree-structured
multi-processor computer architecture. In Proc. of the annual
symposium on Computer architecture, pages 144–151, 1978.

[6] M. Eggebrecht. Is cloud brokerage the next big thing?
http://www.ciozone.com/index.php/Cloud-Computing/Is-
Cloud-Brokerage-the-Next-Big-Thingu.html.

[7] Gartner. Cloud services brokerages: The dawn of the next
intermediation age.

[8] J. Hartigan and M. A. Wong. An algorithm as 136: A k-
means clustering algorithm. Royal Statistical Society. Series
C (Applied Statistics), 28:100–108, 1979.

[9] Ivan. Cloud business trend: Cloud brokerage.
[10] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang.

distance: An adaptive b+-tree-based indexing method for
nearest neighbor search. ACM Trans. Database Syst., 30:364–
397, 2005.

[11] S. Kale, S. Krishnaswamy, and S. Loke. Verity: a QoS
metric for selecting web services and providers. In Proc.
of Web Information Systems Engineering Workshops, pages
131–139. IEEE, 2003.

[12] N. Katayama and S. Satoh. The sr-tree: an index structure
for high-dimensional nearest neighbor queries. In Proc. of
the ACM SIGMOD international conference on Management
of data, pages 369–380, 1997.

[13] K. I. Lin, H. V. Jagadish, and C. Faloutsos. The tv-tree: an
index structure for high-dimensional data. The VLDB Journal,
3:517–542, 1994.

[14] R. Miller. Cloud brokers: The next big opportunity?
http://www.datacenterknowledge.com/archives/2009/07/27/cloud-
brokers-the-next-big-opportunity.

[15] A. Mondal, K. Yadav, and S. Maria. EcoBroker: An
economic incentive-based brokerage model for efficiently
handling multiple-item queries to improve data availability via
replication in mobile-p2p networks. Databases in Networked
Information Systems, pages 274–283, 2010.

[16] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Se-
mantic matching of web services capabilities. The Semantic
WebISWC 2002, pages 333–347, 2002.

[17] J. Rao and X. Su. A survey of automated web service
composition methods. Semantic Web Services and Web
Process Composition, pages 43–54, 2005.

[18] SearchCloudComputing. Top 10 cloud computing providers
of 2011.

[19] SearchCloudComputing-TechTarget. Newservers:
2011 top cloud computing provider, 2011.
http://searchcloudcomputing.techtarget.com/feature/Top-
10-cloud-computing-providers.

[20] C. Security Alliance. Security guidance for critical areas of
focus in cloud computing.

[21] J. Stickeleather. Cloud service brokerage.
http://en.community.dell.com/dell-blogs/enterprise/b/it-
executive/archive/2011/02/22/cloud-service-brokerage.aspx.

[22] S. Taylor, A. Young, and J. Macaulay. Small businesses ride
the cloud: Smb cloud watch - U.S. survey results.

[23] D. A. White and R. Jain. Similarity indexing with the ss-tree.
In Proc. of the International Conference on Data Engineering
(ICDE), pages 516–523, 1996.

[24] L. Xin and A. Datta. On trust guided collaboration among
cloud service providers. In Proc. of. Collaborative
Computing: Networking, Applications and Worksharing
(Collaborate- Com) pages 1–8. IEEE, 2010.

[25] C. Yu, B. C. Ooi, K.-L. Tan, and H. V. Jagadish. Indexing the
distance: an efficient method to knn processing. In Proc. of the
international conference on Very large databases (VLDB),
pages 421–430, 2001.

[26] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang. QoS-aware middleware for web services
composition. IEEE Transactions on Software Engineering,
30(5):311–327, 2004.

http://www.ijsrem.com/
http://www.eweek.com/c/a/Cloud-Computing/Gartner-
http://www.ciozone.com/index.php/Cloud-Computing/Is-
http://www.datacenterknowledge.com/archives/2009/07/27/cloud-
http://searchcloudcomputing.techtarget.com/feature/Top-
http://en.community.dell.com/dell-blogs/enterprise/b/it-
http://en.community.dell.com/dell-blogs/enterprise/b/it-

	Step 1: Property Encoding.
	Step 2: Relationship Encoding.
	Step 3: Index Key Generation
	Step 1: Query Encoding.
	Step 2: K-nearest neighbor search.
	Step 3: Refinement.
	Step 4: Consideration of Special Criteria

